
T
he modern Webites’
medium is defined,
enabled, and constrained
by a pair of “killer” proto-

cols—HTML and HTTP. The
former provides structure for the
object-level content, metalevel
indexing and description, and,
regrettably for purists, control over
the presentation and
format. The latter is a
platform-indepen-
dent, client/server
protocol defined
for any packet-
switched digital net-
work that supports
the lower-level TCP/IP
protocol suite.

HTTP is an application layer
protocol that sits directly atop
Transmission Control Protocol
(TCP), which in turn sits atop
Internet Protocol (IP). HTTP is
similar to File Transmission Pro-
tocol (FTP), Telnet, Simple Mail
Transfer Protocol (SMTP), and
other sundry application proto-
cols that handle the business
part of the Internet’s work.
HTTP is rather unique, how-
ever, in that it is “stateless.” The
logical flow of an HTTP transac-
tion sequence is:

1. Connect a client to a server
(in the case of a Web browser,
this typically amounts to a
mouse click);

2. Make a request of the server
(get data, execute a program,
write data, and so forth);

3. Fulfill the request for the
client; and

4. Close the connection.

The state-
lessness results from step (4).
Once the transaction cycle is
complete, the connection
between client and server is dis-
connected. Full stop. Dead.
History.

This is like having to go to the
checkout stand every time you put
an item in your shopping cart. In
fact, that’s exactly the way the bur-
geoning e-commerce community
looked at HTTP. There had to be
a better way.

Enter Netscape. What the

HTTP world needs is transaction
persistence, they reasoned in the
mid-1990s. If one could just
retain information in a stateless
setting like one retains groceries in
a shopping cart, the world would
be a better place. Collecting all of
this information on servers would
quickly bog down the servers. So
the course was clear: the persis-
tence would take the form of
depositing what I affectionately
refer to as “Web guano” on the

client’s hard disk.
Armed with a

mechanism by
means of which
the browser soft-
ware could
deposit these
little digital
leftovers on

the end user’s
hard disk, one could

build a veritable “shopping cart”
of information. One can imagine
a collective “Awesome concept,
dude!” as the software developers
stood witness as this idea passed
through the browser birth canal.
How this persistent, state-object
became known as a “cookie,”
however, remains a mystery to me
(please fill me in if you know).

COMMUNICATIONS OF THE ACM May 2001/Vol. 44, No. 5 19

Caustic Cookies

JA
SO

N
 S

C
H

N
EI

D
ER

Hal Berghel

They can be beneficial aids in e-commerce, but cookies are the
corrosive ingredient when it comes to invading personal privacy.

Digital Village

acm acm
This image was deleted from the electronic version of this article due to copyright restrictions.

20 May 2001/Vol. 44, No. 5 COMMUNICATIONS OF THE ACM

A Basic Cookie Mix
In any case, the technical descrip-
tion of a cookie is a piece of “trans-
action state” (connection)
information left on the client
before the HTTP transaction cycle
is concluded. Included in this state
information is a specification of a
range of URLs for which that
information is relevant. Subse-
quent HTTP requests of URLs
that fall within this range will
prompt the browser to transmit
this state information from the
client to whatever server hosts that
URL. This state information can
take on any number of forms—
items in electronic shopping carts,
persistent identifiers (user IDs and
passwords, to name two), and user
preferences. Whenever you see a
screen prompt that reads “in order
to personalize this experience…,”
you’re about to get a cookie
whether you want it or not.

Baking digital cookies is pretty
simple. Here’s how it works. The
first stage is the cookie “inges-
tion.” The cookie is introduced to
your computer by some server-side
program that includes a “Set-
Cookie” header as part of a HTTP
response. The cookie mix consists
of two ingredients: field NAMES
and field <data>. This chunk of
the HTTP header might look like
this:

Set-Cookie:
USER_NAME=john jones;
DATA_ELEMENT_1=pocket
watch
DATA_ELEMENT_2=“encoded
stuff”

DATA_ELEMENT_k=....
EXPIRES=Thursday, 25-Jan-01,
12:59:59 GMT;
PATH=/gotcha
DOMAIN=whazzamatta_u.edu

NAME=value is the only essen-
tial Set-Cookie attribute. And that
information would all be written
on your hard disk in a pre-defined
directory set by your browser (the
default location for Windows is

C:\Windows\Cookies). Netscape’s
recommended cookie parameters
were 300 per client with the least-
recently used deleted to make
room for more, 4KB per cookie,
and 20 cookies per completely
specified domain.

The second stage of the basic
approach is cookie “withdrawal.”
This happens whenever a URL is
accessed by a browser that requests
information from “whazzamatta_
u.edu,” or any other URLs with
any domain tail and path match-
ing that of the Set-Cookie header
fragment. So, the URL www.dept-
of-shameless-methodologies.col-
lege-of-hard-knocks.whazzamatta_
u.edu/gotcha is a match with the
parameters of our cookie. Thus,
the cookie contents will be sent to
the server irrespective of content.

Therein lies the rub. Take a

look at DATA_ELEMENT’s 2
through k. The contents of these
fields are anyone’s guess. Collect-
ing user-profiling information, IP
numbers, shopping cart contents,
user IDs, user-selected preferences,
serial numbers, frequencies of con-
tact with companies, demograph-
ics, purchasing histories,
credit-worthiness, and customizing
interfaces, are all potentially bene-
ficial uses of cookies. But this

same information may also be
abused. And the collection of such
personal information as social
security numbers and other per-
sonal identifiers, credit card num-
bers, phone numbers, and
addresses is, in my view, totally
unacceptable.

Web Barbarians at the
Electronic Gates
While cookies can be beneficial
aids in online commerce, they are
not without risk to personal pri-
vacy. These digital dog tags are vir-
tually unlimited in the range of
information they can store.

There is no evidence I’m aware
of that responsible online mer-
chants are storing data within their
cookies that intentionally violate
the privacy interests of their cus-
tomers. Also, it should be remem-

It’s one thing to keep track of your customers in

your store, but tagging their clothing with

invisible ink as they walk out the door is another

matter altogether.

Digital Village

bered that when such harmful
information gets stored in cookies,
it is most likely the result of an end
user unwisely volunteering this
information in the first place. That
said, real issues remain.

As our digital villages evolve, we
are slowly transforming our private
sanctuaries into electronic audito-
riums. This trend began with
email (see “Digital Village,” Apr.
1997). While email started the dig-
ital assault on personal privacy, the
Web accelerated it. Modern
“dynamic marketers” maintain
huge databases of “E_dentities”
built upon easily accessible and, in
some cases, public information.
Phone numbers, physical
addresses, email addresses, IP
addresses, and social security num-
bers are all fair game. In the state
in which I reside, for example, one
is legally required to provide one’s
social security number when regis-
tering a boat. This all goes into the
public Fish and Wildlife database.
Over a dozen states still require
that social security numbers be
listed on driver’s licenses—an open
invitation for identity theft (see
“Digital Village,” Feb. 2000). So,
there’s a limit to how much of our
current assaults on personal privacy
we can blame on our friends in e-
commerce. They may be exacer-
bating the problem, but they didn’t
cause it.

However, this doesn’t diminish
the potential damage of cookies.
As a convenience, we’ll label those
who would use these tasty digital
morsels to penetrate our “digital
zone of privacy,” Web barbarians.

I don’t know to what extent I’m
willing to defend the term “barbar-
ian” in this context, but I tend to
view cookie mongers as a group as
a primitive civilization unto them-
selves, not to mention being insen-
sitive and uncultured, so the term
isn’t totally inappropriate. How-
ever, I’m willing to entertain alter-
natives like “lowbrow,” “vulgarian”
and “boor” if barbarian seems too
strong. The general idea, however,
is that for wont of a simple techni-
cal patch to overcome the stateless-
ness of TCP/IP, we have created a
(cookie) monster. And cookies by
modern technology standards tend
toward the innocuous by being
only moderately invasive. At
least—when they are well-
behaved—they are both identifi-
able and manageable.

Far more potential for cookie
malevolence derives from ill-
behaved uses. Cookie worms pro-
vide one such example. In this
case, the cookie is actually infected
by Web bugs. Bear with me, these
things really do exist.

A Web bug is a dimensionless
(for all practical purposes) point
in the presentation of a Web
page. Many of us used Web bugs
in the early days for such things
as password protection. We
would sensitize a single pixel in
the page, and then click on that
pixel, identified by the X, Y coor-
dinates of the cursor at the bot-
tom-left corner of the browser
window to bring up a CGI form
that would allow us to modify
some component of our site from
any browser rather than have to

log in to our account. (Remem-
ber, image anchors in HTML
need not be perceptible.) In
recent years, Web bugs have
become buried within multi-
source documents, especially
within banners, without the user’s
detection. But one of the
strengths of modern browsers is
they can routinely render multi-
source documents as single pages,
so there’s not much that can be
done to deter these nasty critters.

Why Web bugs? Because every
contributor to a multi-source doc-
ument can potentially share all of
the cookies created for the primary
URL. So, if XYZ company can
achieve a subtle insertion into a
larger multi-source document, it
can access all of the data collected
in the cookies by monitoring the
clickstream of the user, and also
access any information recorded in
a cookie by the primary Web site.
In the trade, these are called third-
party cookies—cookies inter-
cepted, modified, or written by a
server other than the host of the
primary URL. Any alteration of
the primary URL’s cookies is a
cookie worm. There have been
successive attempts to discourage
this practice by modifying the
browsers so only the primary URL
can access and modify cookies, but
third-party cookie monsters have
thwarted this protection by
appending the active URL’s
domain tail to their own in their
Set-Cookie HTTP header, so at
this point no one really knows how
widespread the use of Web
bugs are.

COMMUNICATIONS OF THE ACM May 2001/Vol. 44, No. 5 21

22 May 2001/Vol. 44, No. 5 COMMUNICATIONS OF THE ACM

The Real Issue
You may have surmised by now
that I believe cookies are an
exceedingly bad idea—perhaps the
only fly in the Netscape ointment.
I don’t deny for a moment the
utility of persistent transaction
identifiers in facilitating e-com-
merce. The problem with cookies
is that they’re invasive, pure and
simple. It’s one thing to keep track
of your customers in your store,
but tagging their clothing with
invisible ink as they walk out the
door is another matter altogether.

But the potential toxicity of
cookies is the symptom, not the
problem. The problem society has
to deal with is whether the collec-

tion of personal information about
an individual without the individu-
al’s informed consent should be tol-
erated. Whether the means involves
cookies, scripts, Java applets, Active
X executables, rogue servers that
dispense “pseudo cookies,” or
snoopware that extracts informa-
tion from client browser history
databases, caches, temporary Inter-
net files, or any other means for
that matter, is irrelevant. The real
issue is personal privacy.

Regrettably, the community of
computer scientists of which I am
a part has been overly relaxed in
the deployment of technology
without careful scrutiny of the
long-term implications of our

work. Cookies are but one exam-
ple of the technological shortcom-
ings of our digital village.

Perhaps the real measure of
greatness in our new millennium
will be the degree to which we use
our technologies to protect our
individuality. While society sorts
this out, I recommend you revisit
your browser’s security preferences
and give serious consideration to
disabling all cookies or at the very
least, requiring a prompt.

Hal Berghel is professor and chair of
Computer Science at the University of Nevada,
Las Vegas, and a frequent contributor to the
literature on cyberspace; www.acm.org/hlb.

© 2001 ACM 0002-0782/01/0500 $5.00

c

Berghel’s URL Pearls

For more information on cookies,
visit Cookie Central (www.cook-

iecentral.com) or The Limit (www.
thelimit.org/cookies.html).

Effective cookie management
software is widely available for
Microsoft Windows platforms, and
exists more narrowly for other plat-
forms as well. All work effectively
with the most popular browsers.

Examples include:

! COOKIE CRUSHER (www.
thelimitsoft.com)—a quality cookie
manager that can be accompanied
with an Internet housekeeping tool,
Cyber Clean.
! COOKIE CRUNCHER (www.
-rbaworld.com/Programs/

CookieCruncher)—full-functioning
freeware from Mark Richter.
! COOKIE PAL (www.kburra.com)
—a quality cookie manager.
! VAC PAC (www.nsclean.com/
vacpack.html)—a general purpose
housekeeping tool that includes
separate cookie managers for
Netscape and Explorer, plus other
file management tools, the most
interesting of which is
Evidence Eliminator.
! WINDOW WASHER (www.
webroot.com)—a general
purpose housekeeping tool that
includes a cookie manager
component along with a cache and
history manager for both Netscape
and Explorer.

Final Note: Cookies are not the
least of our cyber-threats.
Additional privacy threats arise
from the Windows 98 Registration
Wizard, ill-behaved HTTP servers,
public-domain utilities (one
example is “Comet Cursor”), the
IDENTD identification daemon,
viruses, trojan horses, Java
scripts, “hit logging,” spyware
that monitors use off-line and
then reports the activity when the
user reconnects, Explorer’s
“phone home” feature, and even
innocuous productivity apps like
Word and Powerpoint. The latter
embed network media in just the
same way as browsers and are, in
principle, just as vulnerable. c

Digital Village

